Search results for "Absorption edge"

showing 10 items of 95 documents

Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectri…

2018

[EN] In this letter, we have investigated the electronic structure of A(x)Ba(1-x)Nb(2)O(6) relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to pa…

010302 applied physicsDiffractionPhase transitionMaterials sciencePhysics and Astronomy (miscellaneous)Absorption spectroscopyCondensed matter physics02 engineering and technologyPhoton energy021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityLight scatteringCRYSTALSTEMPERATURE-DEPENDENCEAbsorption edgeCALCIUM BARIUM NIOBATEFISICA APLICADA0103 physical sciencesDirect and indirect band gaps0210 nano-technologyCALCIUM BARIUM NIOBATE TEMPERATURE-DEPENDENCE CRYSTALS
researchProduct

Inhomogeneous electron distribution in InN nanowires: Influence on the optical properties

2012

In this work, we study theoretically and experimentally the influence of the surface electron accumulation on the optical properties of InN nanowires. For this purpose, the photoluminescence and photoluminescence excitation spectra have been measured for a set of self-assembled InN NWs grown under different conditions. The photoluminescence excitation experimental lineshapes have been reproduced by a self-consistent calculation of the absorption in a cylindrical InN nanowires. With the self-consistent model we can explore how the optical absorption depends on nanowires radius and doping concentration. Our model solves the Schrodinger equation for a cylindrical nanowire of infinite length, a…

010302 applied physicsElectron densityPhotoluminescenceMaterials scienceCondensed matter physicsNanowirePhysics::Optics02 engineering and technologyElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCondensed Matter::Materials ScienceAbsorption edge0103 physical sciencesPhotoluminescence excitation0210 nano-technologyAbsorption (electromagnetic radiation)Surface statesphysica status solidi c
researchProduct

Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses

2016

Abstract Evolution of free-volume positron trapping defects caused by crystallization process in (80GeS 2 –20Ga 2 S 3 ) 100−х (СsCl) x , 0 ≤ x ≤ 15 chalcogenide-chalcohalide glasses was studied by positron annihilation lifetime technique. It is established that CsCl additives in Ge–Ga–S glassy matrix transform defect-related component spectra, indicating that the agglomeration of free-volume voids occurs in initial and crystallized (80GeS 2 –20Ga 2 S 3 ) 100−х (СsCl) x , 0 ≤ x ≤ 10 glasses. Void fragmentation in (80GeS 2 –20Ga 2 S 3 ) 85 (СsCl) 15 glass can be associated with loosing of their inner structure. Full crystallization in each of these glasses corresponds to the formation of defe…

010302 applied physicsVoid (astronomy)RadiationMaterials scienceAnalytical chemistryChalcogenide glassMineralogy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPositron trappingSpectral linelaw.inventionAbsorption edgeFragmentation (mass spectrometry)law0103 physical sciencesCrystallization0210 nano-technologyInstrumentationPositron annihilationRadiation Measurements
researchProduct

Pressure dependence of the optical properties of wurtzite and rock-salt Zn1–xCoxO thin films

2007

In this paper we investigate the electronic structure of Zn 1-x Co x O by means of optical absorption measurements under pressure. Thin films of Zn 1-x Co x O with different Co content (from 1 to 30%) were prepared by pulsed laser deposition on mica substrates. Absorption spectra exhibit three main features that are clearly correlated to the Co content in the films: (i) absorption peaks in the infrared associated to crystal-field-split internal transitions in the Co 3d shell, with very small pressure coefficients due to their atomic character; (ii) a broad absorption band below the fundamental edge associated to charge transfer transitions, that exhibit relatively large pressure coefficient…

Absorption edgeAbsorption spectroscopyChemistryAbsorption bandPhase (matter)Analytical chemistryThin filmCondensed Matter PhysicsAbsorption (electromagnetic radiation)Electronic Optical and Magnetic MaterialsWurtzite crystal structurePulsed laser depositionphysica status solidi (b)
researchProduct

Huge shift of fundamental electronic absorption edge in Sr1−xBaxNb2O6 crystals at elevated temperatures

1995

Absorption edgeAbsorption spectroscopyChemistryInorganic chemistryAnalytical chemistrySpectral shiftCondensed Matter PhysicsElectronic Optical and Magnetic Materialsphysica status solidi (b)
researchProduct

Structural Properties and Temperature Behaviour of Optical Absorption Edge in Polycrystalline ZnO:X (Cu,Ag) Films

2013

Silver- and copper-doped ZnO lms were prepared by radio-frequency magnetron sputtering on glass substrates. The in uence of dopants content on the structural, morphological properties as well as on evolution of the optical absorption edge was considered. It has been found that Ag- and Cu-doped ZnO lms are characterized by wurtzite crystalline structure with the preferred direction of crystalline orientation (002). The sizes of grains within the lms were found to be dependent on the type of dopant. The temperature evolution of the optical absorption edge is described by the modi ed Urbach rule that re ects polycrystalline nature of the material. The corresponding parameters concerning electr…

Absorption edgeAnalytical chemistryGeneral Physics and AstronomyPolycrystalline ZnOCrystalliteActa Physica Polonica A
researchProduct

Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen

2011

The effect of the crystalline phase of TiO 2 (anatase, rutile and brookite) on its photocatalytic activity in hydrogen production from methanol-water vapours has been investigated by testing a series of both home-made and commercial TiO 2 photocatalysts, either bare or surface-modified by deposition of a fixed amount, i.e. 1 wt%, of platinum as co-catalyst. For all of the TiO 2 samples the rate of hydrogen production increased by one order of magnitude upon Pt deposition, because of the ability of Pt to enhance the separation of photoproduced electron-hole pairs. Under irradiation in the 350-450 nm wavelength range, brookite and anatase showed similar photoactivities, both superior to that …

AnataseMaterials scienceHydrogenBrookitechemistry.chemical_elementPhotochemistrychemistry.chemical_compoundAbsorption edgechemistryRutilevisual_artTitanium dioxidevisual_art.visual_art_mediumPhotocatalysisSettore CHIM/07 - Fondamenti Chimici Delle TecnologiePhysical and Theoretical ChemistryHydrogen productionPhotochemical & Photobiological Sciences
researchProduct

Study of the reflection spectrum of the LMXB 4U 1702-429

2016

The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( $\sim10^{37}$ erg s$^{-1}$) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60$^{\circ}$.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A bro…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineAccretion accretion diskSettore FIS/05 - Astronomia E AstrofisicaIonization0103 physical sciencesStars: individual: 4U 1702-429Emission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsindividual: 4U 1702-429; Stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Stars]PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieAccretion (astrophysics)Stars: neutronNeutron starAbsorption edgeSpace and Planetary ScienceElectron temperatureAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state …

2011

A large field experiment of the Saharan Mineral Dust Experiment (SAMUM) was performed in Praia, Cape Verde, in January and February 2008. The aerosol at Praia is a superposition of mineral dust, sea-salt, sulphates and soot. Particles smaller than 500 nm are mainly mineral dust, mineral dust–sulphate mixtures, sulphates and soot–sulphate mixtures. Particles larger then 2.5 μm consist of mineral dust, sea-salt and few mineral dust–sulphate mixtures. A transition range exists in between. The major internal mixtures are mineral dust–sulphate and soot–sulphate. Mineral dust–sea-salt mixtures occur occasionally, mineral dust–soot mixtures were not observed. The aspect ratio was 1.3–1.4 for dry p…

Atmospheric Science010504 meteorology & atmospheric sciencesChemistryMineralogy010501 environmental sciencesMineral dustmedicine.disease_causecomplex mixtures01 natural sciencesSootAerosolCape verdeAbsorption edgemedicineParticleParticle sizeAbsorption (electromagnetic radiation)0105 earth and related environmental sciencesTellus B: Chemical and Physical Meteorology
researchProduct

Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds

2010

A strong nonlinear pressure dependence of the optical absorption edge has been measured in defect chalcopyrites CdGa{sub 2}Se{sub 4} and HgGa{sub 2}Se{sub 4}. The behavior is due to the nonlinear pressure dependence of the direct band-gap energy in these compounds as confirmed by ab initio calculations. Our calculations for CdGa{sub 2}Se{sub 4}, HgGa{sub 2}Se{sub 4} and monoclinic {beta}-Ga{sub 2}Se{sub 3} provide evidence that the nonlinear pressure dependence of the direct band-gap energy is a general feature of adamantine ordered-vacancy compounds irrespective of their composition and crystalline structure. The nonlinear behavior is due to a conduction band anticrossing at the {Gamma} po…

Brillouin zoneMaterials scienceAbsorption edgeCondensed matter physicsAb initio quantum chemistry methodsVacancy defectDirect and indirect band gapsAbsorption (logic)Crystal structureCondensed Matter PhysicsEnergy (signal processing)Electronic Optical and Magnetic MaterialsPhysical Review B
researchProduct